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Abstract 

In this paper, we have modified the SIR model based on compartment theory [5] to study the mathematical and stability 

analysis of the transmission dynamics of Tuberculosis by including latent infection. This modified model consists of four 

compartments SLIR, defined as Susceptible, Latent (infection), Infection and Recover. The susceptible become infected 

if they are infected by airborne infection mycobacterium and then they move from susceptible compartment to the latent 

(infected) compartment (L) which carries the infection but not infectious. If not treated, becomes infected and infectious, 

moves to the compartment infection (I). The treatment is a long procedure, many a time the infected feels better and 

doesn’t complete the treatment. Thus, patient instead of recovering completely moves back to the latent (infection) 

compartment, wherein the bacteria remain inactive for a while. As soon as bacteria become active, latently infected returns 

to the infection compartment. The governing differential equations are defined. The reproduction number 𝑅0 of the model 

is calculated using the Jacobian matrix method [6]. A brief of stability and numerical analysis is also done.  

1. Introduction 

Tuberculosis is an airborne infection caused by the Mycobacterium Tuberculosis (MTB) bacilli. The disease tuberculosis 

is an ancient scourge. It has plagued humankind throughout known history and human prehistory [1]. It is therefore 

important to model infectious diseases so that they can be managed and the epidemic can be reduced. The various 

mathematical models are used to study the process by which the progress of epidemic can be understood and controlled. 

It is anticipated that the ability to make disease predictions would enable scientists to understand its growth in the 

population so that inoculation or isolation plans can be planned effectively.  

Roughly 4 million people each year who develop TB disease who are undiagnosed, unreported, or inappropriately treated 

[11]. The widespread availability of vaccines, an arsenal of anti-microbial drugs and, more recently, a highly viable 

attempt by the World Health Organization to promote a single global control, after several decades of research is being 

managed successfully. 

A basic definition of three interacting compartments: Susceptibility (S), Infected (I), and Recovered (R), is given by the 

SIR model [3][4][5] in epidemiology. The SIR model, despite its simplicity, exhibits the basic structure to understand the 

dynamics of contagious diseases. In recent years, several variants of the SIR model have been studied to model effectively 

more complex diseases and mechanisms of infection. The SIR model has been used to study the progression of 

Tuberculosis [9][10]. 

In this paper, we modify the SIR model by introducing a compartment termed as latent (infected) to study the dynamics 

of tuberculosis and the incidence function assumed to be bilinear. The paper is organised as follows: In section 2, we state 

the mathematical equations of the model. In section 3, the basic reproduction number computed and the stability of 

equilibrium points using Lyapunov function. Section 4 discusses the importance of the parameters related to latent 

(infected) and graphically using numerical solution followed by the conclusion as section 5. 

2. Mathematical Model 

The TB bacteria target any part of the body including skin, lung, kidney, spine and brain. Not everybody who is affected 

by TB (Tuberculosis) bacteria gets ill. As a result, there are two conditions linked to TB: latent infection with TB (LTBI) 

and TB disease. TB disease can be fatal if not adequately treated [11]. 

Here, the modified SIR model of TB transmission is analysed by dividing the human population into four subpopulations, 

namely, Suspected S, latent L, Infected I, and Recovered R. The movement of the population is defined in Fig. 1. The rate 
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of birth, death is Λ and µ, respectively. The rate of susceptible to infected (latent) and recovered is β and δ, the rate of 

infected to recover is γ. The treatment for tuberculosis symptoms can last anywhere from six months to a year, and 

sometimes more for drug-resistant tuberculosis. The recovered population moves back to susceptible as a different strain 

of tuberculosis causing bacteria can infect. TB recurrence can be caused either by reactivation of the same strain (i.e. by 

relapse primarily due to unsuccessful or incomplete treatment) or by new strain reinfection, which means that a TB patient 

after recovering doesn’t acquire any immunity [8]. So, the recovered population moves to susceptible again with a rate σ. 

 

 

 

 

 

 

The governing differential equations of the above model (Fig.1) are: 

𝑑𝑆

𝑑𝑡
= 𝛬𝑁 −  

𝛽 𝑆(𝑡)𝐼(𝑡)

𝑁
− 𝜇 𝑆(𝑡) + 𝜎𝑅(𝑡)               (1) 

𝑑𝐿

𝑑𝑡
=

𝛽 𝑆(𝑡)𝐼(𝑡)

𝑁
− (𝜇 + 𝛿 + 𝛼)𝐿(𝑡)                           (2) 

𝑑𝐼

𝑑𝑡
= 𝛼𝐿(𝑡) − (𝜇 + 𝑑 + 𝛾)𝐼(𝑡)                                     (3) 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼(𝑡) + 𝛿𝐿(𝑡) − (𝜎 + µ) 𝑅(𝑡)                           (4) 

Where   N(t) =  S(t)  +  L(t)  +  I(t) +  R(t),                                                (5) 

    S(0)=S0 > 0, L(0)=L0 ≥ 0, I(0)=I0 ≥ 0 and R(0)=R0 ≥0. 

The equations (1) - (5) are re-written using dimensionless variables as: 

S' = S/N, L'=L/N, I'=I/N, R'=R/N, and further omitting dashes, we obtain 

𝑑𝑆

𝑑𝑡
= 𝛬 −   𝛽 𝑆(𝑡)𝐼(𝑡) − 𝜇 𝑆(𝑡) + 𝜎𝑅(𝑡)                 (6) 

𝑑𝐿

𝑑𝑡
= 𝛽 𝑆(𝑡)𝐼(𝑡) − (𝜇 + 𝛿 + 𝛼)𝐿(𝑡)                          (7) 

𝑑𝐼

𝑑𝑡
= 𝛼𝐿(𝑡) − (𝜇 + 𝑑 + 𝛾)𝐼(𝑡)                                    (8) 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼(𝑡) + 𝛿𝐿(𝑡) − (𝜎 + µ) 𝑅(𝑡)                          (9) 

Where   1 =  S(t)  +  L(t)  +  I(t) +  R(t),                                                     (10) 

    S(0)=S0 > 0, L(0)=L0 ≥ 0, I(0)=I0 ≥ 0 and R(0)=R0 ≥0. 
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3. Conditions of Equilibrium 

Positivity of the Solution: We show that the model equations (6 - 9) are biologically and epidemiologically meaningful 

and well-posed. It is appropriate to show that the solutions of all the stated variables are non-negative. The requirement is 

stated as theorems and is followed by its proof: 

Theorem 1: If S(0) > 0, L(0) > 0, I(0) > 0 and R(0) > 0 then the solution region S(t), L(t), I(t) , R(t) of the system of 

equations (6 - 9) is always non-negative.  

Proof: Consider the system of the equations (6 - 9), each differential equation is discussed separately and shown that its 

solution is positive. 

Theorem 2: Positivity of infected human population: Considering (8) and that can be rewritten: 

𝑑𝐼

𝑑𝑡
= 𝛼𝐿(𝑡) − (𝜇 + 𝑑 + 𝛾)𝐼(𝑡) ≥ −(𝜇 + 𝑑 + 𝛾)𝐼(𝑡) .                            

On, integrating the solution is 𝐼 = 𝐼0𝑒−∫ (𝜇+𝑑+𝛾
𝑡

0
)𝑑𝑡. It is clear from the solution that I(t) is positive since I0 > 0 and the 

exponential function is always positive. 

Theorem 3: Positivity of latent infected population: Considering the differential equation (8) of the system 

 
𝑑𝐿

𝑑𝑡
= 𝛽 𝑆(𝑡)𝐼(𝑡) − (𝜇 + 𝛿 + 𝛼)𝐼(𝑡) ≥ −(𝜇 + 𝛿 + 𝛼)𝐼(𝑡). 

Using the technique of separation of variables and on integrating:  

𝐿 = 𝐿0𝑒−∫ (𝜇+δ+α
𝑡

0
)𝑑𝑡 . 

For any value of the exponent, the exponential term is always a non-negative quantity. Also it is assumed that L(0) > 0. 

Thus, it is clear from the solution that L(t) is positive. 

Theorem 4: Positivity of recovered: Considering the differential equation (9) of the system 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼(𝑡) + 𝛿𝐿(𝑡) − (𝜎 + µ)𝑅(𝑡) ≥  −(𝜎 + µ)𝑅(𝑡)  

The L(t) and I(t) are positive in time t. On, integrating the solution is 𝑅 = 𝑅0𝑒−∫ (𝜎+µ)
𝑡

0
𝑑𝑡. It is clear from the solution that 

I(t) is positive since I0 > 0 and the exponential function is always positive. 

Theorem 5: Positivity of susceptible population: Finally, we consider the differential equation (6): 

𝑑𝑆

𝑑𝑡
= 𝛬 −   𝛽 𝑆(𝑡)𝐼(𝑡) − 𝜇 𝑆(𝑡) + 𝜎𝑅(𝑡)  ≥   −  𝛽 𝑆(𝑡)𝐼(𝑡) − 𝜇 𝑆(𝑡)           

Λ is the rate of birth and R(t), being positive, we can write as: 

𝑑𝑆

𝑆(𝑡)
=   −(  𝛽𝐼(𝑡) + 𝜇) 𝑑𝑡 

On, integrating the solution is 𝑆 = 𝑆0𝑒−∫ (𝛽𝐼(𝑡)+µ)
𝑡

0
𝑑𝑡. It is clear from the solution that S(t) is positive since S0 > 0 and the 

exponential function is also positive. 

The model equations (6-10) are biologically and epidemiologically meaningful and well-posed as the solutions of all the 

state variables are bounded.  

From Equation (6) to (9), as 

𝑑𝑆

𝑑𝑡
+

𝑑𝐿

𝑑𝑡
+

𝑑𝐸

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
= 0  
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𝛬 −   𝜇 𝑆(𝑡) = 0                 

Therefore, the feasible region for the system is given by (S*, L*, I*, R*) 

S∗ =
𝛬

𝜇
, L∗ = 0, I∗ = 0, R∗ = 0, 

𝜔 = [(𝑆∗, 𝐿∗, 𝐼∗, 𝑅∗) ∈ 𝑅4+ ∶ 𝑆∗ + 𝐿∗ + 𝐼∗ + 𝑅∗  ≤
𝛬

𝜇
 

Hence, it sufficient to consider solutions in the region 𝜔. The solutions of the initial value problem starting in 𝜔 and 

defined by (7) - (10) exist and are unique on a maximal interval. Since the solution remains bounded in the positively 

invariant region 𝜔, the maximal interval defined is [0, 1).  So, the initial value problem is both well-posed and is positive. 

The above system always has a disease-free equilibrium: 

(
𝛬

𝜇
, 0, 0, 0, ) 

Using the Jacobian Matrix method and differential equations (6)-(9), the Characteristic polynomial is obtained: 

(𝜆 + 𝜇)(𝜆 + 𝜇 + 𝜎)(−𝛼𝛽𝛬 + 𝛼𝜇(𝑑 + 𝜆 + 𝜇 + 𝛶) + 𝜇(𝛿 + 𝜆 + 𝜇)(𝑑 + 𝜆 + 𝜇 + 𝛶))

𝜇
 

The Eigenvectors are: 

𝜆1 =  −𝜇, 𝜆2 = −𝜇 − 𝜎, 𝜆3 =
−𝐴 − √𝜇√𝐵

2𝜇
, 𝜆4 =

−𝐴 + √𝜇√𝐵

2𝜇
 

where 𝐴 = 𝑑𝜇 + 𝛼𝜇 + 𝛿𝜇 + 2𝜇2 + 𝜇𝛶 

𝐵 = 4𝛼𝛽𝛬 + 𝑑2𝜇 − 2𝑑𝛼𝜇 + 𝛼2𝜇 − 2𝑑𝛿𝜇 + 2𝛼𝛿𝜇 + 𝛿2𝜇 + 2𝑑𝜇𝛶 − 2𝛼𝜇𝛶 − 2𝛿𝜇𝛶 + 𝜇𝛶2 

Also, B can be re-written as: 

4𝛼𝛽𝛬 + 𝜇(𝛼 − 𝑑 + 𝛿 − 𝛶)2 ≥ 0 

Therefore roots are real. Also, λ1, λ2, λ3, are negative and for λ4 < 0 

−𝐴 > √𝜇√𝐵 

On substituting values of A and B, simplifying we obtain 

𝛼𝛽𝛬

𝜇(𝛼 + 𝛿 + 𝜇)(𝑑 + 𝜇 + 𝛶)
< 1 

So, we define, basic reproductive number R0 as, 

𝑅0 =
𝛼𝛽𝛬

𝜇(𝛼 + 𝛿 + 𝜇)(𝑑 + 𝜇 + 𝛶)
 

On solving equation (9) to (11), we obtain 

S∗ =
𝛬

R0𝜇
, 

𝐿∗ =
(−1 + R0)𝛬(𝜇 + 𝜎)(𝑑 + 𝜇 + 𝛶)

𝑃𝑅0
, 

I∗ =
(−1 + R0)𝛼𝛬(𝜇 + 𝜎)

𝑃𝑅0
, 

http://www.jetir.org/


© 2018 JETIR October 2018, Volume 5, Issue 10                                                                      www.jetir.org (ISSN-2349-5162) 

JETIR1810A25 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 826 
 

R∗ =
(−1 + R0)𝛬(𝑑𝛿 + 𝛼𝛶 + 𝛿(𝜇 + 𝛶))

𝑃R0
 

Where, 

P = 𝑑𝛼(𝜇 + 𝜎) + 𝑑𝜇(𝛿 + 𝜇 + 𝜎) + 𝜇(𝛿 + 𝜇 + 𝜎)(𝜇 + 𝛶) + 𝛼𝜇(𝜇 + 𝜎 + 𝛶) 

Thus, DFE point (Λ/μ, 0, 0, 0) of (6) - (9) is globally asymptotically stable in Ω if R0 ≤ 1and is unstable if R0 > 1. 

Now, we find the stability of the endemic equilibrium (σ = 0) [7]. We consider equation (6), (7) and (8) only. 

Consider a Lyapunov function: 

𝑉 = 𝑊1 (𝑆 − 𝑆∗log 
𝑆

𝑆∗
) + 𝑊2 (𝐿 − 𝐿∗log 

𝐿

𝐿∗
) + 𝑊3 (𝐼 − 𝐼∗log 

𝐼

𝐼∗
) 

Substituting the value of �̇�, �̇� and 𝐼 ̇from equation (6) and (7) and (8) 

�̇� = 𝑊1(𝑆 − 𝑆∗)(
𝛬

𝑆
−  𝛽𝐼 − 𝜇 ) + 𝑊2(𝐿 − 𝐿∗)(𝛽 

𝑆𝐼

𝐿
− (𝜇 + 𝛿 + 𝛼)) + 𝑊3(𝐼 − 𝐼∗)(𝛼

𝐼

𝐿
− (𝜇 + 𝑑 + 𝛾) )      

Let the equilibrium points be:  𝜇 =
𝛬

𝑆∗ −  𝛽𝐼∗ ,  𝜇 + 𝛿 + 𝛼 =
𝑆∗𝐼∗

𝐿∗  and 𝜇 + 𝑑 + 𝛾 = 𝛼
𝐼∗

𝐿∗ 

�̇� = −𝑊1(𝑆 − 𝑆∗)𝛬
(𝑆 −   𝑆∗)

𝑆𝑆∗
+  𝛽(𝐼 − 𝐼∗)) + 𝑊2𝛽(𝐿 − 𝐿∗) (

𝑆𝐼

𝐿
−

𝑆∗𝐼∗

𝐿∗
) + 𝑊3(𝐼 − 𝐼∗)𝛼(

𝐼

𝐿
−

𝐼∗

𝐿∗
 )      

≤ −𝛬𝑊1(
(𝑆 −  𝑆∗)2

𝑆𝑆∗
+  𝛽(𝐼 − 𝐼∗)(𝑆 − 𝑆∗)) −

𝑊2𝛽𝑆∗𝐼∗(𝐿 − 𝐿∗)2 

𝐿𝐿∗
− 𝛼𝑊3𝐼∗(𝐼 − 𝐼∗)(𝐿 − 𝐿∗  )      

 �̇�  ≤ 0  for S< S*, I < I* and L< L* , W1=W2=W3=1 and also for S = S*, I = I*, L = L* ,V = 0. 

Therefore, by La Salle’s Invariance principle [2], the endemic system is globally asymptotically stable. 

4. Numerical Discussion 

We use NDSolve function of Wolfram Mathematica to solve dimensionless differential equations (6) to (10) numerically. 

The numerical solutions of S, L, I and R, are plotted for different values of parameters. The solutions of S(t), L (t), I(t) and 

R(t) for the parameters: t=100, Λ=μ=.01, R0=0.5, γ=.13, α=0.3, σ=.011. 

Case I: If the TB is diagnosed well within time and treated properly the individual without becoming infectious will 

recover. The different values for δ = 0.01, 0.05, 0.1. As the rate of movement from latent infected compartment to the 

recovered compartment is increased consequently the infected reduces. The peak of the R(t) and latent infected L(t) 

increases while the peak of the infection and susceptible reduces (Fig. 2-4). 
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Case II: Keeping other parameter constants, we vary α, the rate of latent infected L(t) to infected I(t) depends on the 

medical facilities available including TB diagnostic tests and follow-up treatments. The patient who completes the 

treatment successfully will be moved to the compartment recovered else can carry TB latently. As α is increased and takes 

value 0.05, 0.05 and 0.1, the peak of the graph of Infected I(t) increases while susceptible and recovered decreases (Fig. 

5-7).  

 

 

 

 

 

 

5. Conclusion 

This study presents a simple yet realistic deterministic model for the transmission dynamics of tuberculosis. In contrast to 

many tuberculosis models in the literature, we have included the compartment latent (infection). The latent (infection) 

category is of particular importance in modelling tuberculosis as it remains latent or even after treatment, the virus may 

remain inactive in the body.  The individuals who seek medical intervention and those who recover from active 

tuberculosis will move to the susceptible compartment. The statistics for the latent (infected) patient is not available as it 

remains unidentified. The recovery parameters also give an idea of failure in treating both active tuberculosis and latent 

tuberculosis. We have simulated both the recovery from the latent and infected compartment. We have established that 

by identifying the latently infected patients through diagnostic tests and treating them before they could become infectious 

will not only help in recovery but also the population of infected will reduce, consequently the spread will reduce being 

airborne contagious disease. Since there is no permanent immunity to tuberculosis and the recovered can still lose their 

immunity and become susceptible again therefore we have considered this factor [8]. This simplistic model indicates that 

the number of infections rises resulting in endemic and is found to be globally asymptotically stable (Fig. 8). (In the data 

[12], the high incidence rate of TB is assumed to be the total infected including latent infected. 
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